Brainloop
 
4. BCI - Intro
  4.1. Definition and features of a BCI
  4.1.3. The parts of a BCI

Like any communication or control system, a BCI has:

1) input
2) output
3) components that translate input into output
4) a protocol that determines the onset, offset, and timing of operation.


Picture: basic design and operation of any BCI system. Signals from the brain are acquired by electrodes on the scalp or in the head and processed to extract specific signal features (e.g. amplitudes of evoked potentials or sensorimotor cortex rhythms, firing rates of cortical neurons) that reflect the user’s intent. These features are translated into commands that operate a device (e.g. a simple word processing program, a wheelchair, or a neuroprosthesis). Success depends on the interaction of two adaptive controllers, user and system. The user must develop and maintain good correlation between his or her intent and the signal features employed by the BCI; and the BCI must select and extract features that the user can control and must translate those features into device commands correctly and efficiently.

 
4. BCI - Intro
  4.1. Definition and features of a BCI
  4.1.1. Dependent and independent BCIs
4.1.2. BCI use is a skill
4.1.3. The parts of a BCI
  4.1.3.1. Signal acquisition
4.1.3.2. Signal processing: feature extraction
4.1.3.3. Signal processing: the translation algorithm
4.1.3.4. The output device
4.1.3.5. The operating protocol
4.2. Present-day BCIs
  4.2.1. Visual evoked potentials
4.2.2. Slow cortical potentials
4.2.3. P300 evoked potentials
4.2.4. Mu and beta rhythms
  4.2.4.1. The Wadsworth BCI
4.2.4.2. The Graz BCI
4.2.5. Cortical neuronal action potentials
4.3. The future of BCI-based communication
   

Source: Brain–computer interfaces for communication and control, Clinical Neurophysiology 113 (2002) 767–791, Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller, Theresa M. Vaughan